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Abstract. We study amplitude-squared squeezing of the Hermitian operator Zθ = Z1 cos θ + Z2 sin θ, in
the most general superposition state |ψ〉 = C1 |α〉 + C2 |β〉, of two coherent states |α〉 and |β〉. Here
operators Z1,2 are defined by Z1 + iZ2 = [a − 〈ψ| a |ψ〉]2, a is annihilation operator, θ is angle, and
complex numbers C1,2, α, β are arbitrary and only restriction on these is the normalization condition of
the state |ψ〉. We define the condition for a state |ψ〉 to be amplitude-squared squeezed for the operator
Zθ if squeezing parameter S ≡ [〈ψ| (∆Zθ)

2 |ψ〉 − 〈ψ|N |ψ〉 + 〈ψ| a |ψ〉 〈ψ| a+ |ψ〉] < 1
2
, where N = a+a and

∆Zθ = Zθ − 〈ψ|Zθ |ψ〉. We find maximum amplitude-squared squeezing of Zθ in the superposed coherent
state |ψ〉 with minimum value 0.3268 of the parameter S for an infinite combinations with α − β =
2.16 exp[±i(π/4) + iθ/2], C2/C1 = 0.3 exp[ 1

2
(αβ∗ − α∗β)] and with arbitrary values of (α+ β) and θ. For

this minimum value of squeezing parameter S, the expectation value of photon number can vary from
the minimum value 1.0481 to infinity. Variations of the parameter S with different variables at maximum
amplitude-squared squeezing are also discussed.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quan-
tum state engineering and measurements

1 Introduction

Squeezing [1] is a phenomenon in which variance in one
of the quadrature components become less than that in
vacuum state or coherent state [2] at the cost of increased
fluctuations in the other quadrature component. This is a
non-classical phenomenon in the sense that for this effect
Glauber-Sudarshan P function [3,4] is less well behaved
than a probability density, i.e., it takes on negative val-
ues and become more singular than a delta function. Ear-
lier study [5] of squeezing was largely in academic interest
only but now its utility in reducing noise in communica-
tions [6,7], quantum teleportation [8], dense coding [9],
quantum cryptography [10] and in detection of gravita-
tional waves [11] has been well realized.

The definition of squeezing has been generalized to
case of several variables [12–15]. Hong et al. [12] intro-
duced the concept of higher-order squeezing by consid-
ering the nth order (n is even integer) moments of the
quadrature component and defined a state to be nth or-
der squeezed if the expectation value of the nth power
of the difference between a field quadrature and its av-
erage value is less than what it would be in a coherent
state. Another form of higher-order squeezing in terms
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of real and imaginary parts of square of the amplitude,
the so-called ‘amplitude-squared squeezing’, has been pro-
posed by Hillery [13]. The author considered the opera-
tors Y1 and Y2, such that Y1 + iY2 = a2, with commuta-
tion relation [Y1, Y2] = i(2N + 1), and defined a state
|ψ〉 to be amplitude-squared squeezed for the operator
Yi (i = 1 or 2), if

〈ψ| (∆Yi)2 |ψ〉 <
[
〈ψ|N |ψ〉 +

1
2

]
, (1)

where ∆Yi = Yi − 〈ψ|Yi |ψ〉, N = a+a and a is annihi-
lation operator. If an optical field generates second har-
monic, signal of second-harmonic is proportional to the
square of the signal of optical field. Hence amplitude-
squared squeezing can be related to the fluctuations of
the signal of the second harmonic.

The author pointed out that amplitude-squared
squeezing of Yi depends upon the amplitude of the state,
i.e., if a state |ψ〉 is squeezed for the variable Yi, this
does not mean the displaced state D(α) |ψ〉 will be also
squeezed for Yi, where D(α) = exp(αa+ − α∗a) is the co-
herent state displacement operator [2]. It should be noted
that ordinary squeezing in any state |ψ〉 is not affected by
operation of the displacement operatorD(α). To avoid the
difficulty of dependence of amplitude-squared squeezing of
the variable Yi on the amplitude of the state, Hillery [13]
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defined the operators Z1 and Z2 by

Z1 + iZ2 = [a− 〈ψ| a |ψ〉]2 , (2)

which measure the square of the fluctuations of annihi-
lation operator about its mean value. The commutator
between operators Z1 and Z2,

[Z1, Z2] = i
[
2N + 1 − 2(a+ 〈ψ| a |ψ〉 + 〈ψ| a+ |ψ〉 a)

+2 〈ψ| a+ |ψ〉 〈ψ| a |ψ〉] , (3)

yields the condition for a state |ψ〉 to be amplitude-
squared squeezed for the variable Zi (i = 1 or 2) as

〈ψ| (∆Zi)2 |ψ〉 <
[
〈ψ|N |ψ〉 − 〈ψ| a+ |ψ〉 〈ψ| a |ψ〉 +

1
2

]
,

(4)
where ∆Zi = Zi − 〈ψ|Zi |ψ〉.

Hillery [14] introduced another type of higher-order
squeezing, called sum squeezing and difference squeezing
by considering two mode systems and using sum and dif-
ferences of various bilinear combinations constructed from
the creation and annihilation operators. Zhang et al. [15]
defined kth-order squeezing based on the operators A =
(ak+a+k)/2 and B = (ak−a+k)/2i following Hillery [13].
The higher-order squeezing defined [13–15] by different
types of definitions is different from Hong and Mandel’s
higher-order squeezing [12]. However all of squeezed states
produced by different kinds of higher-order squeezing def-
initions are non-classical.

There have been several proposals [16–22] for detection
of higher-order squeezing. Recently Shchukin et al. [16]
have shown that amplitude-squared squeezing of the vari-
able Yi can be characterized by homodyne correlation
measurements of the moments of annihilation operator,
creation operator, quadrature operators and photon num-
ber operator. The methods of detection of Hong and
Mandel’s higher-order squeezing and amplitude-squared
squeezing of the variable Yi using higher-order sub-
Poissonian statistics [17] have been recently proposed by
Prakash et al. [18,19]. On the similar lines experimen-
tal detection of amplitude-squared squeezing of the vari-
able Zi has also been proposed by Prakash et al. [20].
Method of detection of sum and difference squeezing has
been proposed by Hillery [14], Giri et al. [21], and Prakash
et al. [22].

Amplitude-squared squeezing can be produced in var-
ious processes [23–27] such as nonlinear optical processes,
cavities, JC model and Kerr effect. Other possibilities for
generating such effect have been proposed by superposi-
tion of two or more coherent states. It has been realized
that the superposition of two or more coherent state ex-
hibit [28–35] various non-classical effects like squeezing,
antibunching, higher-order squeezing and higher-order
sub-Poissonian statistics etc. In particular, Yunji et al. [28]
studied amplitude-squared squeezing of the operators Y1

and Y2 in even coherent state, odd coherent state and the
states obtained by their displacement. The authors showed
that even and odd coherent states are minimum uncer-
tainty states for the operators Y1 and Y2. The authors also

reported that the displaced even coherent states can ex-
hibit amplitude-squared squeezing while the displaced odd
coherent state can not exhibit amplitude-squared squeez-
ing. There have been several proposals for the genera-
tion of optical superposition states in various non-linear
processes [36] and in quantum nondemolition measure-
ments [37].

In this paper we study amplitude-squared squeezing of
the most general hermitian operator,

Zθ = Z1 cos θ + Z2 sin θ, (5)

in the most general superposed coherent state,

|ψ〉 = C1 |α〉 + C2 |β〉 , (6)

of two coherent states |α〉 and |β〉. Here operators Z1,2 are
defined by equation (2), and the complex numbers C1, C2,
α, β and the real θ are all arbitrary and only restriction on
these is the normalization condition of the state |ψ〉, i.e.,

|C1|2 + |C2|2

+ 2Re
{
C∗

1C2 exp
[
−1

2
(|α|2 + |β|2) + α∗β

]}
= 1. (7)

For simplicity we define squeezing parameter (following
Hillery [13]),

S = 〈ψ| (∆Zθ)2 |ψ〉− 〈ψ|N |ψ〉+ 〈ψ| a |ψ〉 〈ψ| a+ |ψ〉 , (8)

which characterizes amplitude-squared squeezing of Zθ.
If the squeezing parameter S < 1

2 , the state |ψ〉 is
called amplitude-squared squeezed for the operator Zθ.
We use the properties of displacement operator [2] and
find conditions on the variables C1, C2, α, β and θ for
maximum amplitude-squared squeezing in the superposed
coherent state |ψ〉. We show that maximum amplitude-
squared squeezing of Zθ in the superposed coherent state
|ψ〉 with absolute minimum value 0.3268 of the squeez-
ing parameter S occurs for an infinite combinations with
|α− β| = 2.16 and C2/C1 = 0.3 exp[12 (αβ∗ − α∗β)] and
with arbitrary values (α + β) and θ. Variations of the
squeezing parameter S with different variables are also
discussed.

2 Squeezing parameter S in superposed
coherent states |ψ〉
Single mode coherent state |α〉 defined by a |α〉 = α |α〉
can be written as

|α〉 = exp

(
−|α|2

2

) ∞∑
n=0

αn√
n!

|n〉 = D(α) |0〉 , (9)

where |n〉 is the occupation number and D(α) =
exp(αa+ − α∗a) is the displacement operator. Using the
relation D+(α)aD(α) = a+ α, we have

〈ψ′| (∆Zθ,|ψ′〉)2 |ψ′〉 = 〈ψ| (∆Zθ,|ψ〉)2 |ψ〉 , (10)
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and

〈ψ′|N |ψ′〉 − 〈ψ′| a+ |ψ′〉 〈ψ′| a |ψ′〉 =

〈ψ|N |ψ〉 − 〈ψ| a+ |ψ〉 〈ψ| a |ψ〉 , (11)

where |ψ′〉 = D(α) |ψ〉, ∆Zθ,|ψ′〉 = Zθ − 〈ψ′|Zθ |ψ′〉 and
∆Zθ,|ψ〉 = Zθ − 〈ψ|Zθ |ψ〉 = ∆Zθ. From equations (8),
(10) and (11) we conclude that squeezing parameter S in
any state |ψ〉 is not affected by operation of the displace-
ment operatorD(α). This observation and the relation [2],
D(α)D(β) = exp[12 (αβ∗−βα∗)]D(α+β), suggest that we
can simplify by writing the superposed coherent state |ψ〉
(defined in Eq. (6)) as

|ψ〉 = D

[
1
2
(α+ β)

]
|ψ1〉 ; |ψ1〉 = C′

1 |ξ〉+C′
2 |−ξ〉 (12)

where ξ = 1
2 (α−β) and C′

1,2 = C1,2 exp[± 1
4 (αβ∗−βα∗)] ≡

r1,2 exp(iφ1,2). Without loss of generality we label the
smaller of r1 and r2 as r2 and the corresponding coherent
state as |−ξ〉 (if r1 = r2 any one of them is r2). Therefore
we can write the state |ψ1〉 in the simpler form,

|ψ1〉 = K
[|ξ〉 + r eiφ |−ξ〉] , (13)

where 0 � φ ≡ (φ1 − φ2) < 2π, and 0 < r ≡ (r2/r1) � 1.
If we consider ξ = Aeiθξ , we can further write |ψ1〉 in the
form,

|ψ1〉 = eiθξN |ψ2〉 ; |ψ2〉 = K
[|A〉 + reiφ |−A〉] . (14)

Since we have Zθ = e−
1
2 iθNZ1 e

− 1
2 iθN , we get

〈ψ| (∆Zθ)2 |ψ〉 = 〈ψ2| e−iδN (∆Z1)2eiδN |ψ2〉
= 〈ψ3| (∆Z1)2 |ψ3〉 , (15)

where

|ψ3〉 = K
[∣∣Aei δ〉 + reiφ

∣∣−Aei δ〉] ; δ = θξ − θ

2
. (16)

We have also

〈ψ|N |ψ〉 − 〈ψ| a+ |ψ〉 〈ψ| a |ψ〉 =

〈ψ3|N |ψ3〉 − 〈ψ3| a+ |ψ3〉 〈ψ3| a |ψ3〉 . (17)

Therefore we conclude that squeezing parameter S in the
state |ψ〉 will be same as that in the state |ψ3〉. Since the
state |ψ3〉 contains only four parameters (A, r, δ and φ)
while the state |ψ〉 contains eight parameters (complex
numbers C1, C2, α and β) hence it is easier to calcu-
late the squeezing parameter S in the state |ψ3〉 than
that in the state |ψ〉 and minimize it for studying maxi-
mum amplitude-squared squeezing of Zθ in the state |ψ〉.
Straightforward calculations lead to

〈ψ3|N |ψ3〉 − 〈ψ3| a |ψ3〉 〈ψ3| a+ |ψ3〉 =

2K2A2
(
1 + r2 − 2r cosφe−2A2

)
− 2K4A2T2, (18)

〈ψ3|Z1 |ψ3〉 =

A2 cos 2δ −K4A2
(
T1 cos 2δ + 4rR sinφ sin 2δe−2A2

)
,

(19)

and

〈ψ3|Z2
1
|ψ3〉 =

1
2

+
1
2

[
A4 cos 4δ + 2K4A4

(
T1 cos 4δ

+ 4rR sinφ sin 4δe−2A2
)
−3K8A4

(
T 2

1 cos 4δ

− 16r2R2e−4A2
sin2 φ cos 4δ

+ 8rRT1 sinφ sin 4δe−2A2
)]

+
1
2

[
A4 + 2K2A2

(
1 + r2 − 2r cosφe−2A2

)

− 2K4A2T2 − 2K4A4T1 − 3K8A4T 2
2

+ 4K6A4T2

(
1 + r2 − 2r cosφe−2A2

) ]
,

(20)

where R = (1− r2) and T1,2 = (R2 ∓4r2 sin2 φe−4A2
). We

finally get the expression of squeezing parameter,

S = 〈ψ3|(∆Z1)2 |ψ3〉−〈ψ3|N |ψ3〉+〈ψ3| a+ |ψ3〉 〈ψ3| a |ψ3〉
=

1
2

+
1
2

[
A4 cos 4δ + 2K4A4

(
T1 cos 4δ

+ 4rR sinφ sin 4δe−2A2
)
− 3K8A4

(
T 2

1 cos 4δ

−16r2R2e−4A2
sin2 φ cos 4δ+8rRT1 sinφ sin 4δe−2A2

)]

+
1
2

[
A4 − 2K4A4T1 − 3K8A4T 2

2 + 4K6A4T2

(
1 + r2

− 2r cosφe−2A2
)]

−
[
A2 cos 2δ −K4A2

(
T1 cos 2δ

+ 4rR sinφ sin 2δe−2A2
)]2

. (21)

3 Maximum amplitude-squared squeezing
in superposed coherent state |ψ〉
and discussion

For studying the maximum amplitude-squared squeezing
of Zθ, we minimize the parameter S (see Eq. (21)) by vary-
ing δ, φ, r and A. If we vary the parameter S against δ and
φ we get the following set of points where the parameter
S is minimum,

(i) φ = 0, δ = ±(2n+ 1)
π

4
, (ii) φ = π,δ = ±nπ

2
,

(22)
for n = 0, 1, 2, 3, 4, 5, . . . Therefore we get the final ex-
pressions of the parameter S that are minimum against
the variations in δ and φ as,

Smin for φ,δ =
1
2
− 8rR2A4e−2A2

[1 + r2 + 2re−2A2 ]3
, (23)

and

Smin for φ,δ =

1
2

+
8A4R2r[

1 + r2 − 2re−2A2
]4

[
2r − (1 + r2)e−2A2

]
, (24)
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Fig. 1. (i) Variation of the parameter S with A at δ = π
4
,

φ = 0 and r = 0.3. (ii). Variation of the parameter S with A
at δ = 0, φ = π and r = 0.28.

δ

Fig. 2. (i) Variation of the parameter S with δ at φ = 0,
r = 0.3 and A = 1.08. (ii) Variation of the parameter S with δ
at φ = π, r = 0.28 and A = 0.41.

for the conditions (i) and (ii) respectively. We calculate the
minimum value of the parameter S for both conditions
by computer programming. We get the minimum value
0.3268 of the parameter S (for the condition (i)) at A =
1.08 and r = 0.3, and the minimum value 0.4465 of the
parameter S (for the condition (ii)) at A = 0.41 and r =
0.28. Variations of the squeezing parameter S with x, r, δ
and φ for both conditions are shown in Figures 1–4.

Since the squeezing parameter S in any state does not
change on operation of displacement operator we conclude
that the same maximum amplitude-squared squeezing of
Zθ in the state |ψ〉 occurs with the absolute minimum
value 0.3268 of the parameter S. Therefore we finally con-
clude, in terms of the variables (Z1, Z2, α, β and θ) con-

Fig. 3. (i) Variation of the parameter S with r at δ = π
4
,

φ = 0 and A = 1.08. (ii) Variation of the parameter S with r
at δ = 0, φ = π and A = 0.41.
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Fig. 4. (i) Variation of the parameter S with φ at δ = π
4
,

r = 0.3 and A = 1.08. (ii) Variation of the parameter S with
φ at δ = 0, r = 0.28 and A = 0.41.

sidered originally, that the maximum amplitude-squared
squeezing of Zθ in the state |ψ〉 occurs for an infinite com-
binations with, α − β = 2.16 exp[i(±π

4 + θ
2 )], C2/C1 =

0.3 exp[12 (αβ∗−α∗β)] and with arbitrary values of (α+β)
and θ. Since the action of the displacement operator does
not affect the squeezing parameter S but can change pho-
ton number hence this large amplitude-squared squeezing
can be produced at large intensities also. The minimum
value of average photon number that can produce such
large amplitude-squared squeezing in the state |ψ〉 with
minimum value 0.3268 of the parameter S, is 1.0481 which
occurs at (α+ β) = 0. For this minimum value of squeez-
ing parameter, therefore the expectation value of pho-
ton number can vary from the minimum value 1.0481 to
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infinity because there is no upper limit to it as (α+ β) is
arbitrary.
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